

Inframat* Corporation 151 Progress Drive Manchester, CT 06042 1-888-NANO-888 1-860-432-3722 web: www.inframat.com email:info@inframat.com

Infralloy™ S7417 Tungsten Carbide/Cobalt 83WC/17Co Thermal Spray Powder

SUMMARY

Infralloy™ S7417 is a tungsten carbide/cobalt (WC/Co) powder. Its chemistry is 86wt%WC and 17wt%Co. Particle size is in the range of:

Praxair JP5000 system: -45 to +15 microns Metco DJ 2700 hybrid: -45 to +5 microns

Other particle size for plasma spray gun system can also be obtained, *e.g.*, -45 to +10 microns, can be obtained depending on customers' specific needs.

SUGGESTED COATING SPRAY SYSTEMS

Metco DJ 2700, Praxair JP5000, or detonation, etc.

SUGGESTED APPLICATIONS

Coatings of Infralloy™ S7410 are recommended for the following applications

Typical Applications

Wear resistance Bearing surfaces, knife edges, conveyor screws, thread guides, impeller shafts, anti-

galling sleeves, exhaust fans, oil field ball/gate valves, aircraft flap tracks, turbine compressor stators, turbine mid-span supports (fan blades), turbine fan duct segments,

rollers (steel making or printing)

POWDER CHARACTERISTICS

Typical Composition: WC:Co:Cr wt ratio 83:17

Alloy elements <1%

Particle size: -45 to +5 microns for DJ 2700 Metco

Or -45 to +15 microns for Praxair JP5000

Eutectic Temperature 1320°C

Infralloy™ S7417 Tungsten Carbide/Cobalt 83WC/17Co Thermal Spray Powder

TYPICAL PHYSICAL PROPERTIES OF THE COATINGS

Textures of as-sprayed 120-200 microinches

Ground surface 2-4 microinches

Cross Section Microhardness 900-1050 VHN₃₀₀

Bond strength (low carbon steel coupons) >12,000 psi

WEAR RESISTANCE

This coating is suitable for high wear resistant surface application where high toughness is required

POST SPRAY FINISHING

Coatings of Infralloy™ S7410 are best finished by grinding. Finishing of 2-4 micron inch of surface can be achieved

TYPICAL STARTING SPRAYING PARAMETERS

Hybrid DJ 2700 using Propylene

Hardware	Pressure			Folwmeter Reading (FMR)			Flow (SCFH)			Powder Feeder (DJP)			Spray	
	psig				(TWIK)			(SCFII)			(DJF)			
Air Cap	O_2	C ₃ H ₆	Air	O_2	C ₃ H ₆	Air	O ₂	C ₃ H ₆	Air	N ₂ FMR	N ₂ SCFH	Air psig	Rate lbs/h	Dist inch
DJ2701	150	100	100	40	40	48	578	176	857	55	28.5	20	5-15	8-10

Hybrid DJ2600 using hydrogen

junu 202000 daniig ii jun ogan														
Hardware	Pressure			Folwmeter Reading			Flow			Powder Feeder			Spray	
	psig			(FMR)			(SCFH)			(DJP)				
Air Cap	O_2	H_2	Air	O_2	H_2	Air	O_2	H_2	Air	N_2	N_2	Air	Rate	Dist
										FMR	SCFH	psig	lbs/h	inch
DJ2603	170	140	100	32	62	44	489	1450	786	55	28.5	20	5-15	8-10

Standard DJ 9A using Propylene

The state of the s														
Hardware	Pressure			Folwmeter Reading			Flow			Pov	vder Feed	Spray		
	psig			(FMR)			(SCFH)			(DJP)				
Air Cap	O_2	C ₃ H ₆	Air	O ₂	C ₃ H ₆	Air	O ₂	C ₃ H ₆	Air	N ₂ FMR	N ₂ SCFH	Air psig	Rate lbs/h	Dist inch
DJ3-9	150	80	75	43	42	47	620	167	742	55	26.3	20	5	6-8

Infralloy™ S7417 Tungsten Carbide/Cobalt 83WC/17Co Thermal Spray Powder

Standard DJ8A using hydrogen

Hardware	Pressure psig			Folwi	Folymeter Reading (FMR)			Flow (SCFH)			Powder Feeder (DJP)			Spray	
Air Cap	O_2	\mathbf{H}_2	Air	O_2	H_2	Air	O_2	\mathbf{H}_2	Air	N ₂ FMR	N ₂ SCFH	Air psig	Rate lbs/h	Dist inch	
DJ3-8	150	125	75	38	63	45	550	1400	710	60	28.7	20	5	6	

POWDER HANDLING

Wear a mask and gloves when pouring powders into the feeder or discharging from the feeder

SAFETY MEASURES IN SPRAYING

Thermal (plasma) spray is a completely safe process when performed in accordance with Equipment Safety Measures. Familiarize with yourself with local safety regulations before start spray operations. When spraying it is recommended always have at least two personnel on sight.

DISREGARDING TO THESE SAFETY INSTRUCTION MAYBE DANGEROUS TO YOUR HEALTH